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SUMMARY

Systematic tests have been performed to study the behaviour of a numerical method developed to calculate 2D,
steady free surface ¯ows. The Reynolds equations are solved in the physical space by employing a non-
orthogonal staggered grid, while the k±e model is adopted to approximate the Reynolds stresses. The free surface
is calculated following an iterative procedure and various parameters that affect convergence and accuracy of the
numerical solution have been examined. Calculated results are compared with measured data for two cases, i.e.
the wave generation above a bottom topography at various Froude numbers and the free surface formation above
a submerged hydrofoil. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The calculation of 2D, steady free surface ¯ows has received particular interest in applications of

computational ¯uid dynamics. Apart from representing real problems, e.g. many cases in open

channel hydraulics,1 these ¯ows are offered for evaluating 3D numerical methods. Although such

methods have recently been applied with success in marine hydrodynamics to calculate the wave

generation around ships,2 the determination of the free surface by solving the Navier±Stokes

equations requires excessive computer power. This is why they have been applied so far only to

simple hull forms at model scale. A common practice to investigate their performance with respect to

accuracy and convergence is to test these methods in 2D applications.

Depending on the examined problem, potential or viscous ¯ow methods can be applied to calculate

2D ¯ows with a free surface. Potential solutions may be categorized in two general groups, i.e. the

boundary element approaches and those that solve the discretized Euler equations. The former have

been proved the most effective for obtaining quick solutions3±5 and therefore for performing

parametric studies.6 Euler methods have been applied mostly to solve ¯ow ®elds around submerged

hydrofoils,7±9 while some of them have been developed to study the performance of advanced

numerical techniques, e.g. the unstructured grid approximation.8

When viscous phenomena are dominant, the Navier±Stokes or the Reynolds equations have to be

solved numerically to obtain realistic results. Unfortunately, the computing demands of relevant
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methods are signi®cantly higher than those of applying potential ¯ow solvers. Most of the viscous

¯ow codes developed so far treat the free surface problem as time-dependent, i.e. the steady solution

is reached through a physically consistent iterative procedure.10±13 More or less, the main effort in

these methods has been focused on acquiring solutions, while systematic studies concerning the

in¯uence of characteristic parameters on the convergence behaviour are rather limited. In some

cases11 the effect of the grid size on the numerical solution has been examined, but without obtaining

nearly grid-independent results. Lungu and Mori12 have performed remarkable tests regarding the

effect of discretization schemes, boundary conditions and higher-order, Eulerian free surface

approximations on ¯ow calculations about a hydrofoil, but their applications were restricted to

laminar ¯ow cases and they have not been compared with experimental data. However, it must be

noted that, even with their improved techniques, convergence to steady state was achieved in almost

30,000 time steps, which is a rather slow rate.

An alternative way to achieve steady state solutions is to apply iterative methods that solve

successively the steady Navier±Stokes equations. In this case the problem becomes the determination

of a free boundary that satis®es the necessary conditions, without taking into account time derivatives

in intermediate steps. Such procedures may be advantageous, since they neglect memory effects that

preserve oscillating trends which decelerate convergence. In this sense the scope of the present work

is to study the behaviour of a steady state procedure when various 2D problems are examined, i.e.

free surface ¯ows about bottom topographies and submerged hydrofoils. An effort is made to

investigate how some crucial numerical and physical parameters affect the numerical solution as well

as to compare computational with experimental results.

3. NUMERICAL METHOD

2.1. Governing equations

It is assumed that the Reynolds and the continuity equations describe the incompressible and

turbulent free surface ¯ow around the two-dimensional bodies that are examined. To calculate the

Reynolds stresses which appear in the momentum equations, the isotropic eddy viscosity k±e model14

is employed, i.e. two more differential equations are introduced to close the system of unknown

variables. In a Cartesian co-ordinate system (x1, x2) any transport equation can be written in the

general form
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where r is the ¯uid density, (u1, u2) are the mean velocity components corresponding to (x1, x2) and

F denotes a scalar variable. The left-hand side (LHS) of (1) includes the partial derivative of F with

respect to time t and the convection of F by the mean ¯ow. The ®rst two terms on the right-hand side

(RHS) of (1) stand for the diffusion of F, while the source term SF depends on the examined variable

and its expressions are presented in Table I together with those of the diffusion coef®cient GF.

In Table I, m denotes the molecular viscosity of the ¯uid, while mt is the turbulent (or eddy)

viscosity which, according to the standard k±e model, is calculated as

mt � rCmk2=e; �2�

where Cm� 0�09, k is the turbulence kinetic energy and e is its dissipation rate.
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The variable p* in the source term of the two momentum equation is equal to the sum of the static

pressure p and the gravitational body force, i.e.

p� � p� rgh; �3�
where g is the gravitational acceleration and h denotes the vertical distance from a reference level.

The ®nite volume method is applied to solve numerically the system of transport equations (1). The

calculation domain is covered by a non- orthogonal, body-®tted H-mesh having one set of co-ordinate

lines always parallel to the Cartesian axis x2 (Figure 1). Since the free surface is transformed during

the solution procedure, this type of grid presents the advantage of quick and simple adjustment.

Besides, it is bene®cial for obtaining ef®cient expressions with regard to convergence as well as for

calculating accurately the grid velocities when the problem is treated as time-dependent. However,

one should note that this mesh is not always suitable for describing complex underwater geometries.

In such cases, effective solutions can be obtained either by applying domain decomposition

techniques or by introducing unstructured grid methodologies.8,11,12

Table I. Source terms of transport equations
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Figure 1. Non-orthogonal mesh above bottom topography
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A staggered grid arrangement is adopted to solve the strongly coupled momentum and continuity

equations, i.e. the velocity components are de®ned at different points from the pressure which is

calculated at the centre of cell (I, J) (Figure 1). Each transport equation is integrated in the

corresponding control volume and results in a discretized equation of the general form

APFP � ANFN � ASFS � ADFD � AUFU � SFI ; �4�
where N, S, D and U correspond to the neighbouring points of the central node P in the physical

space. Equation (4) is derived by applying central differences in space to approximate the partial

derivatives of F. In the x2-direction these derivatives can be expressed directly through the values at

the respective grid points, whereas parallel to the x1-axis they are implicitly calculated from the

gradient

@F
@s
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dx1
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@x2
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ds
: �5�

The partial derivative on the LHS of (5) is explicitly calculated from the values at the grid points

along the curvilinear s-direction, while dx1 and dx2 represent the projections of the distance ds

(between successive nodes) on the co-ordinate axes x1 and x2 respectively.

The coef®cients Ai, i�N, S, D, U, in (4) represent the combined effect of the convection and

diffusion terms appearing in the transport equation (1). Diffusion terms can always be approximated

by central differences without causing any convergence problems.15 In the x1-direction they include

only the ®rst term on the RHS of (5), while the second term is integrated as a source term. To obtain

unconditionally convergent solutions, the convective part of Ai is approximated by ®rst-order

upstream or central differences so that Ai is always positive. The application of this lower-order

scheme requires ®ne grids to reduce numerical diffusion errors, unless the grid lines are aligned with

the ¯ow lines. To overcome this shortcoming as far as possible, the x1-grid lines are continuously

transformed to streamlines during the solution procedure. This is accomplished by calculating the

streamfunction values at grid points through the integrals

C�x1; h2� �
�h2

h1

u1�x1; x2�dx2 �C�x1; h1� �6�

and then interpolating the initial C-values on the inlet boundary U of the computational domain

(Figure 1). The limits within which a streamlined grid is formed depend on the problem being

examined. If a body lies within the domain, as in the case of a hydrofoil beneath a free surface, then

the streamfunction is not monotone near stagnation or any separation region and the method cannot

produce lines that are functions of x1. In such cases the aforementioned procedure is applied outside a

zone surrounding the body, denoted by SL in Figure 2, while an exponential distribution is used for

the grid points up to the solid boundary.

Figure 2. Computational grid above submerged hydrofoil
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The solutions of the steady state problems which are examined in the present study can be obtained

either by following successive steady steps or by applying a time-dependent procedure. Evidently in

the former case the time derivative on the LHS of (1) is omitted, while it has to be evaluated when the

problem is treated as time-dependent. However, as the mesh varies continuously, this evaluation

cannot be performed using the standard Eulerian approximation; instead, it is necessary to apply the

concept of moving grids.16,17 When the differential transport equations are integrated in ®nite

volumes, the integral of @F=@t is approximated following the ®rst-order Reynolds transport

theorem:18
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where V(t) denotes the control volume at time t, V(t� dt) denotes the control volume at time t� dt,

FS is the boundary value on the surrounding surface S of V(t), ~ug is the velocity of points on S due to

the transformation of the grid and d~s is the normal vector to S. According to the mean value theorem,

the LHS of (7) can be approximated as
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where FP is the value at the centre of control volume V(t� dt) and FO is the corresponding value for

V(t). In cases where the grid varies simultaneously in all directions, there are dif®culties in de®ning

the grid velocities, so space conservation laws must be adopted to approximate the corresponding

integrals.16,17 However, when the grid changes only in one direction, as in the case under

consideration, the surface integral of (7) can be directly evaluated via the mean value theorem as�
S�t�

FS�t�~ugd~s � Fn�t�dx1ugn ÿ Fs�t�dx1ugs; �9�

where dx1 is the length of the control volume along the x1-axis, Fn and Fs stand for the mean values

on the upper (north) and lower (south) sides of V(t) respectively and ugn and ugs are the corresponding

grid velocities. For a straight line segment it is easy to show that the latter can be calculated through

the abscissae of the middle pooints of the north and south sides as

ugn � x2n�t � dt� ÿ x2n�t�; ugs � x2s�t � dt� ÿ x2s�t�: �10�
Introducing (8) and (9) in (7), the integration of the time derivative at t� dt is approximated as�
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The ®rst term on the RHS of (11) can be included in the main coef®cient AP of the discretized

equation (4), which becomes

AP �
P

i

Ai � r
V �t � dt�

dt
: �12�

The remaining terms of (11) are included in the source term SFt. This treatment corresponds to a ®rst-

order implicit time-marching scheme, since all other variables in (4) are evaluated at t� dt.

Obviously the preceding analysis refers to the solution of time-dependent ¯ows. However, many

methods neglect the terms of (11) which involve the grid velocities when steady state problems are

examined. Apparently this simpli®cation is allowed because the time derivative vanishes when the

solution converges.

FREE SURFACE FLOWS 571

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 567±598 (1997)



2.2. Boundary conditions

The numerical solution of the elliptic-in-space, discretized equations (4) requires the speci®cation

of boundary conditions on each boundary of the calculation domain of Figure 1. On the upstream line

U the u1- and u2-velocity components as well as the turbulence characteristics have known values that

characterize the problem under consideration, i.e. Dirichlet conditions are introduced.

On the solid surface boundary S the wall function method14 is employed to calculate the wall shear

stress and the turbulence quantities. It is assumed that the non-dimensional velocity u+ follows the

logarithmic distribution

u� � y� for y� < 11�63;
�1=k� ln�Ey�� for y�5 11�63;

�
�13�

where

u� � uP

�p tw=r�
; y� � �p tw=r�

yR

n
;

k� 0�42, E� 9�79, tw is the wall shear stress, yR is the normal distance from the solid boundary and

uP is the velocity component parallel to the wall. Under the assumption that in the near-wall region

the production of turbulence kinetic energy equals its dissipation rate, the following expression can

be derived for the wall shear stress:

tw � fwuP; �14�
with

fw �
m=yR for y� < 11�63;

rC0�25
m k
p

k= ln�Ey�� for y�5 11�63:

(
Supposing that uP coincides with the local velocity vector (one-dimensional Couette ¯ow), the

integrated result fwds1 of the wall shear stress in the x1-direction is added to the coef®cient AP of the

adjacent-to-the-wall component u1(I, 2) (Figure 3). In addition, the corresponding coef®cient AS is set

equal to zero, since the convection term on the wall vanishes. For non-orthogonal staggered grids the

calculation of convection and diffusion terms on the south face BC of the control volume of the near-

wall component u2(I, 3) needs special treatment. The values of u2 and its x2-derivatives on BC cannot

be approximated adequately using linear relations when BC lies in a fully turbulent zone. To

calculate the necessary quantities, it is assumed that the total convection Cs through BC is equal to the

difference of the integrals

Cs � r
��

u1dx2

�C

D

ÿ r
��

u1dx2

�B

A

; �15�

which are evaluated by applying the velocity distribution law (13) in the normal direction. The value

of u2s at the centre of BC, which appears in the discretized form of the u2(I, 3) momentum equation,

is obtained by approximating Cs as

Cs � ru2s�x1C ÿ x1B� ÿ 0�5r�u1�I � 1; 2� � u1�I ; 2���x2C ÿ x2B�: �16�
Then the combined effect of viscous stresses on BC is calculated by applying the integrated form of

the u2-momentum to the cell ABCD of Figure 3, which corresponds to the grid point on the wall

where u1� u2� 0. Evidently, to retain conservation, this effect is equal to the viscous force which

acts on the south face of the u2(I, 3) control volume. In the aforementioned equation the wall effect

appears as the projection along x2 of the tw shear force which is implicitly introduced to calculate the
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total force on BC. The calculated values of u1 and u2 on this line are used to calculate the integrated

generation and dissipation terms of the k-equation according to the classical wall function method,14

while the sum of the convection and diffusion terms on the solid boundary is set equal to zero, i.e.

AS� 0 on AD. Finally, the value of e at the centre P of the adjacent-to-the-wall cell is computed using

a simpli®ed mixing length distribution14 as

e � C0�75
m k1�5

kyR

; �17�

which is a Dirichlet condition on the e-equation. As described in the sequel, the pressure correction

method which is followed calculates the pressure values up to the same point P. Assuming that close

to the solid boundary the normal pressure gradient equals zero, the values of pressure p* at points P

are accordingly extrapolated on the wall. Then they are used to calculate pw on the middle of sides

AD (Figure 3) by linear interpolation. The values of pw appear in the source terms of the discretized

momentum equations.

Following the majority of relevant numerical studies, the free surface contour N is not considered

as an interface boundary between two ¯uids with different densities, but as a free boundary on which

the following two basic conditions are valid.

(a) The sum of the normal stresses on N equals the external pressure po (ambient pressure), while

the shear stress and the surface tension are neglected (dynamic boundary condition).

(b) Since in the steady state problem the free surface represents a ¯ow line, the normal velocity

component or, equivalently, the total convection on N is equal to zero (kinematic boundary

condition). The kinematic boundary condition has to be ful®lled at the end of the solution

procedure, because the geometry of the free surface is not a priori known.

If it is assumed that po� 0, then the dynamic boundary condition results as

p�N � rgh; �18�
which speci®es pressure values at the free surface points that in¯uence the corresponding momentum

equations. The N-boundary staggered control volumes of u1 and u2, corresponding to line I in the x1-

direction, are sketched as A2B1C1D2 and A3B3C3D3 respectively in Figure 4. If NJ denotes grid

points on N, the component u1(I, NJ7 1) is calculated at A3 and u2(I, NJ) at C1. In several methods

the value u1(I, NJ) at B3 is approximated by linear extrapolation and a Neumann condition is applied

on N, while u2 is calculated by the continuity equation which demands certain assumptions for the

local pressure distribution. However, there is no restriction on calculating the values of both u1 and u2

on N through the solution of the discretized momentum equations. In this case it can be easily shown

that the coef®cient AN of (4) becomes identically equal to zero for cells (I, NJ), i.e. a Neumann

Figure 3. Control volumes in wall region
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condition is applied to both momentum equations, while the u1(I, NJ) control volume A1B1C1D1 is a

part of the control volume A2B1C1D2. Evidently this approach, which is followed in the present

applications, does not require additional assumptions on the free surface. In any case the k±e
equations are solved up to NJ7 1 points and the Neumann condition AN� 0 for cells (I, NJ7 1) is

applied.

Owing to the absence of information about the ¯ow variables on the downstream boundary D,

simplifying assumptions have to be adopted. The basic approximation being followed is that the

pressure values on D are extrapolated from preceding nodes. If NI denotes the last grid points on D

(Figure 5), the values p*(NI, J) are calculated by applying the ®rst-order Taylor expansion

p��NI ; J � � p��NI ÿ 1; J � � @p
�

@x1

dx1 �
@p�

@x2

dx2: �19�

The partial derivative @p*=@x2 is calculated by central differences on line NI7 1, while @p*=@x1 is

calculated implicitly by applying (19) on lines NI7 2 and NI7 1. Assuming also that the normal

derivative on D of the stress s11 is equal to zero (fully developed ¯ow), the u1-momentum can be

solved up to line NI by simply setting AD� 0 for cells (NI, J) in (4). Consequently, the u1-component

is calculated on D just as on any other line of the calculation domain. It should be noted that the

values u1(NI, J) appear in the integrated form of the continuity equation which is used to compute the

pressure ®eld. On the same boundary it is assumed that the normal derivatives of all other variables

vanish, i.e. the Neumann condition @F=@x1� 0, F� u2, k, e is applied.

The application of the aforementioned procedure for calculating the boundary values of u1 and p*

on D is similar to the non- re¯ecting boundary conditions which have been applied with success in

strongly recirculating ¯ows past 2D bodies.19,20 The basic concept in this approximation is that

instead of extrapolating values of the velocity on the downstream boundary, which is the usual

practice in many works,21 it is better to extrapolate terms that exist in the corresponding momentum

equation.

Figure 4. Control volumes at free surface

Figure 5. Control volumes at downstream boundary
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2.3. Solution procedure

The steps of the iterative algorithm followed to obtain convergence to steady state are described in

Table II. In the ®rst external iteration K� 1 a guess for the velocity components, the pressure ®eld

and the turbulence quantities is initially made, whereas the free boundary N is assumed to be a

horizontal line that coincides with the undisturbed water level. The velocity u1 is set equal to Uo, i.e.

the velocity at in®nity that characterizes the examined problem, while the values of all other variables

are set equal to zero. Apparently p*� 0 implies that the reference level for the hydrostatic pressure is

the undisturbed free surface. Then the solution follows steps 2±4 which solve successively the

momentum, the pressure correction and the turbulence model equations. The pressure correction

equation follows in general the principles of the SIMPLE22 algorithm as described in the next

subsection. For a speci®ed boundary N the aforementioned procedure is applied Nmax times, where

Nmax has a predetermined value. For K� 1 the computations are continued until convergence is

achieved in order to obtain a numerically correct approximation, i.e. the Nmax limit is applied for

K> 1. To achieve convergence in any case, the application of underrelaxation factors is necessary. If

FS denotes the solution of system (4) for any transport variable, the updated value Fn to be used in

subsequent operations is calculated as

Fn � rFo � �1ÿ r�FS; �20�
where r is the underrelaxation factor and Fo is the value of the variable calculated in the previous

step. The introduction of underrelaxation is made according to Reference 23, i.e. equation (20) is

applied to the initial coef®cients of the discretized system (4) as

A0P � AP=r; S0FI � SFI � �1ÿ r�A0PFo: �21�
In the following the underrelaxation factors for the velocity components, the pressure and the

turbulence characteristics will be referred to as ru, rp and rv respectively. After step 5 in Table II a

new free surface is calculated (step 6) and steps 1±6 are repeated until convergence is achieved, i.e.

the kinematic condition is ful®lled.

In the Lagrangian sense the exact kinematic condition correlates the velocity components with the

positions that a free surface particle follows in time. If h(x1, t) describes free surface points, this

relation is expressed as

u1 �
dx1

dt
� x1�t � dt� ÿ x1�t�

dt
; u2 �

dx2

dt
� h�x1 � dx1; t � dt� ÿ h�x1; t�

dt
: �22�

Theoretically, application of (22) should predict accurately the motion of the free surface provided

that the velocity components are known functions of space and time. However, in discretized

systems, various approximations of (22) are introduced depending on the numerical scheme and the

problem being considered. In the adopted co-ordinate system the ful®lment of the kinematic

Table II. Convergence procedure

Step

1 Iteration K� 1: initial guess for ®eld variables
2 Solution of u1- and u2-momentum equations
3 Solution of pressure correction equation; update velocity and pressure
4 Solution of turbulence model equations; update effective viscosity
5 Repeat steps 2±4 Nmax times
6 Calculation of new free surface h(x1)
7 K�K� 1: repeat steps 2±6 until convergence
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condition at the end of a convergence procedure means that the convection term which appears in the

discretized form of the continuity equation vanishes on the free surface (Figure 6):

Cn � u2Mdx1 ÿ u1M�h�x1 � dx1; t� ÿ h�x1; t�� � 0; �23�
where u1M� 0�5[u1(I, NJ)� u1(I� 1, NJ)] and u2M� u2(I , NJ ) denote the velocity components at

the middle M of the line segment between nodes (I, NJ) and (I� 1, NJ), corresponding to ®xed x1-

values. In this respect, two methods have been tested to calculate successive free surface changes.

The ®rst method follows the Lagrangian formulation (22) and calculates the new free surface

elevation at point I� 1 or x1� dx1 according to

h�x1 � dx1; t � dt� � h�x1 � dx01� �
u2M

u1M

�dx1 ÿ dx01�: �24�

The distance dx01 in (24) is calculated to satisfy dx1 ÿ dx01 � u1Mdt according to the ®rst of de®nitions

(22). Assuming that for an adequate grid discretization in x1 the free boundary can be approximated

as a straight line segment between x1 and x1� dx1, any convergence procedure h(t� dt)! h(t)

results in

h�x1 � dx1� ÿ h�x1 � dx01�
dx1 ÿ dx01

� h�x1 � dx1� ÿ h�x1�
dx1

� u2M

u1M

; �25�

which is equivalent to the discretized condition (23). Relation (24) has been used whenever the ®nal

solution is obtained through a sequence of steady problems. In these cases the time step dt appears

only in the computation of dx01 and acts as a geometric underrelaxation factor. To assure that

dx1> dx01 always, the value of the time step is selected to be less than

dtm � rt min�dx1=u1M� �26�
among all segments on the free surface. In (26), rt stands for the underrelaxation factor of the time

step.

The second method which is examined to approximate the new free surface elevation is based on a

truncated form of the exact de®nitions (22). Using ®rst-order Taylor expansions for h(x1� dx1, t� dt)

and x1(t� dt), one may obtain

u2 �
�@h=@t�dt � �@h=@x1�dx1

dt
or

dh�x1; t�
dt

� @h�x1; t�
@x1

u1 ÿ u2: �27�

Relation (27) is often referred to as the Eulerian approximation of the free surface, since

corresponding changes are predicted only in the vertical direction x2, i.e. for constant x1- values.

Owing to this advantage, it has been widely used in marine hydrodynamics and particularly in 3D

applications around complex con®gurations. Theoretically there is no restriction on applying (27) to

both steady and unsteady problems, while its accuracy depends on the selection of the time step. If it

Figure 6. Determination of new free surface elevation
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is applied at the middle M of the surface segment de®ned by dx1, then, to be compatible with (23) at

the end of the iterative procedure, it is apparent that the ®rst derivative of the free boundary, @h=@x1,

should be set equal to [h(x1� dx1)7 h(x1)]=dx1. Since the free surface elevation is computed at M, an

interpolation method is needed to compute the values of h(x1) and h(x1� dx1). The classical cubic

spline interpolation has been adopted in this work.

2.4. Pressure correction equation

As already mentioned, the pressure ®eld is calculated according to a correction method which is

associated with the staggered grid employed. Supposing that (u1, u2) represents a solution of the

momentum equations, there is a need to correlate the velocity changes du1 and du2 with the

corresponding pressure correction gradients dp0 so that (u1� du1, u2� du2) satis®es the integrated

continuity equation in the pressure control volume. In the classical SIMPLE22 approach this is

accomplished by assuming

du1 � Du1dp01; du2 � Du2dp02; �28�
where Du1 and Du2 are functions of the ®eld variables and are calculated from the integrated form of

the momentum equations (4) as

Du1 �
Vu1

dx1Apu1

; Du2 �
Vu2

dx2Apu2

: �29�

In (29), Vu is equal to the cell area of the corresponding velocity component, dx is the distance along

the Cartesian axes between successive pressure nodes and AP is calculated after (12). Apart from the

simpli®cations which are inherent in expressions (28), their application to non-orthogonal grids

requires further approximations which in¯uence drastically the convergence of the velocity and

pressure ®elds. For the adopted grid system the ®rst approximation is related to the linking of the

velocity change du1 with the pressure gradient dp1 along the x1-axis. Since the grid is non-orthogonal

in this direction, pressure forces act on every face of the u1-momentum control volume. On the north

as well as on the south side of this volume they are calculated by interpolating pressure values.

Therefore there is not a simple way to obtain an expression like the ®rst of (28) and dp1 is

approximated using pressure values at successive nodes, while Du1 is calculated after (29). A second

simpli®cation is related to the u1-¯uxes through the north and south faces of the pressure control

volume, which are also calculated using linear interpolations. Although these ¯uxes are included in

the calculation of the total mass balance SM, there are not explicit formulae to correlate the

corresponding velocity changes with pressure gradients. To avoid ill-conditioned matrices for the

pressure correction p0 if terms like the aforementioned are included, the latter are omitted and

application of relations (28) leads to the equation

APp0P � ANp0N � ASp0S � ADp0D � AUp0U � SM; �30�
with AP �

P
Ai, i�N, S, D, U. Equation (30) is similar to the general discretized equation (4), both

being solved by successive applications of the TDMA24 algorithm. The source term SM is equal to the

sum of the mass ¯uxes through the faces of the pressure control volume and vanishes when the ®eld

variables converge. With the speci®ed boundary conditions for the velocity components, Neumann

(zero-gradient) conditions should be applied for the pressure correction on boundaries U, D and S,

while the Dirichlet condition p0 � 0 holds on the free surface where the pressure is known. Despite the

approximations which have been applied, one should keep in mind that the pressure correction

equation has no physical meaning and is introduced to attain convergence of the momentum and

continuity equations. However, depending on the skewness of the cells, these approximations may
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in¯uence convergence quite unfavourably. In order to improve the convergence rate with the adopted

non-orthogonal mesh, three modi®cations have been examined.

First, a more accurate expression has been applied to couple the velocity with the pressure changes.

Apparently relations (28) imply that the terms which take into account the in¯uence of neighbouring

points on the RHS (4) have been neglected. Assuming that the pressure gradients do not vary

signi®cantly between control volumes with common faces, we may obtain the recursive formula25

Du�n� � Du�o� �P
i

A0iDu
�nÿ1�
i : �31�

The ®rst term on the RHS of (31) is expressed as in (29), while the second term represents the

in¯uence of adjacent points. The coef®cients A0i are functions of both the geometry and the

corresponding ®nite volume coef®cients of (4). The number (n) denotes the order of approximation.

For upstream schemes it has been found that suf®cient values of (n) may be lower than four.

Adoption of (31) in 2D and 3D applications has been proved very advantageous.25,26 Actually, the

corresponding coef®cients in the pressure correction equation are intensi®ed, allowing for higher

pressure underrelaxation factors. Besides, they are associated with the momentum equations in a

more rigorous way. Apparently approximation (31) can be applied to either orthogonal or non-

orthogonal grids.

The second improvement is related to the change in u1-¯uxes on the north and south sides of the

pressure control volume (Figure 7). Supposing again that the pressure gradient along x1 does not

change signi®cantly in the vertical direction, a change in the u1-¯ux C0n on the north face may be

related to dp0 according to

C0n � 0�5r�Dunu�p0U ÿ p0P� � Dund�p0P ÿ p0D���x2nu ÿ x2nd�; �32�
where the coef®cients Du are calculated by linear interpolation among the corresponding values in

the x2-direction. Evidently the sign of C0n depends on the sign of the projected distance

Ex2� x2nu7 x2nd. To retain only positive terms in the formation of the ®nite volume coef®cients,

expression (32) is transformed to changes in the coef®cient AU or AD as follows:

dAD � 0�5r�Dunu � Dund=fd�max�0;Ex2�;
dAU � 0�5r�Dunu � Dundfd�max�0;ÿEx2�:

�33�

The above relations have been derived under the assumption that the pressure varies linearly along x1,

which is involved through the factor fd� [x1(I� 2)7 x1(I)]=[x1(I� 1)7 x1(I 7 1)]. Similar

approximations can be derived on the south side of the pressure cell.

Figure 7. Pressure control volume
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The last modi®cation has been the application of a multiple solution of system (30). If this system

is solved once, the velocities corrected after (28) will not in general satisfy the continuity equation,

because the source term SM includes non-orthogonal ¯uxes. It is reasonable to recalculate this term

using the updated velocity components and solve the system again. This procedure can be repeated

several times until the mass sources vanish, but one must consider the associated increase in CPU

time, since the pressure solution is the most time-consuming. The ®nal pressure correction equals the

algebraic sum of the intermediate changes, while the coef®cients Ai in (30) have to be calculated

once.

The effect of the aforementioned modi®cations has been studied in the case of unbounded turbulent

¯ow around an NACA 0012 hydrofoil section. The tested incidence angle was 8� and the Reynolds

number 7�56105. A grid of NI6NJ� 5006100 grid points has been used, where NI denotes grid

points along x1 and NJ along x2. Uniform velocity conditions were imposed on the upstream, north

and south boundaries of the rectangular computational domain. Most computations were carried out

using the underrelaxation factors ru� 0�6 (velocity), rp� 0�3 (pressure) and rv� 0�4 (k and e). Figure

8 shows the in¯uence of various parameters on the convergence rate. The horizontal axis shows the

number of iterations (steps 2±4, Table II), while the vertical axis represents the non-dimensional total

residual, i.e. the sum of the corresponding residuals of the momentum and continuity equations. The

residual of any transport equation is calculated as the sum of the absolute differences between the two

sides of the discretized form (4), i.e.

Res�F� �P
N

APFP ÿ
P

i

AiFi ÿ SFI

���� ����; �34�

where N is the total number of computational points. The non- dimensional residual for the

momentum equations is calculated if expression (34) is divided by rHU2
o, Uo being the velocity at

in®nity and H the height of the calculation domain at the upstream boundary. The corresponding

residual for the continuity equation is equal to the sum of the absolute values of the mass sources SM

in (30), non-dimensionalized by rHUo. The number IP in the legend of Figure 8 stands for the

TDMA iterations performed to solve the pressure correction equation (30). Whenever a multiple

solution is applied, this is denoted as the product of the number of additional solutions and the

number of TDMA iterations. The number IR is equal to the order (n) of the recursive formula (31),

while IC� 1 denotes the application of (33) to improve the shortcomings of non-orthogonality.

It noticeable that with the adopted underrelaxation factors, convergence could not be achieved with

the classical SIMPLE method, i.e. for IP� 15, IR� 0 and IC� 0. In contrast, by applying any of the

above modi®cations, the solution converged at rates depending on the relevant factors. Generally the

differences among the tested cases are not signi®cant, while with IP� 3615, IR� 2 and IC� 1 the

best convergence rate was achieved. A total of 1790 iterations were required to obtain a total residual

less than 10ÿ3, which was a suf®cient criterion for convergence of the lift and drag coef®cients. The

case IP� 15, IR� 2, IC� 1 shows the same stable behaviour as the aforementioned, while the

required iterations increased to 1910. Quite similar trends are observed for IP� 15, IR� 2 and

IC� 0, except that an instability appears around 400 iterations which, depending on the conditions,

may be intensi®ed. The case with IR� 0 presented the lowest convergence rate and required 2350

iterations to satisfy the aforementioned criterion, implying that the pressure underrelaxation is a

crucial parameter.

Basically, the main advantage of the adopted approaches is related to the high underrelaxation

factors which can be applied without causing convergence problems. The in¯uence of under-

relaxation is presented in Figure 9, where the ®rst three cases correspond to IP� 15, IR� 2 and

IC� 1. As observed, the use of a higher underrelaxation factor for the pressure, rp� 0�8, shows an

increasing trend in the number of iterations necessary to obtain convergence, which was found equal
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to 2083. In contrast, higher underrelaxation for the velocity components, ru� 0�8, improved the

convergence rate drastically and required 1210 iterations. The best behaviour was obtained for

ru� rp� 0�8, but this case converged with IP� 3615 and IR� 4, i.e. the computing cost per

iteration was higher. However, the number of iterations reduced drastically to 730. In all cases the

underrelaxation factor for the turbulence characteristics was kept constant, i.e. rv� 0�6.

3. TEST CASES

3.1. Bottom topography

The ®rst test case was the calculation of the wave generation above the experimental pro®le of

Cahouet,3 for which experimental data have been provided at various Froude numbers. The geometry

of the pro®le, which was placed on the bottom of a recirculating water tunnel, is described by the

equation

y � 27

4

E

l3
x�xÿ l�2; �35�

Figure 8. In¯uence of various approximations on convergence rate

Figure 9. In¯uence of underrelaxation factors on convergence rate
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where E� 0�042 m denotes the maximum height y of the pro®le, l� 0�42 m denotes its length and x

is the distance from the leading point. The Froude number of the ¯ow is de®ned through the ¯uid

velocity Uo far upstream and the undisturbed water depth h as

Fr � Uo= �
p

gh�: �36�
In all experimental cases, measurements of the velocity distribution upstream of the pro®le revealed

that the ¯ow was fully turbulent. Therefore no transition area was taken into account in the

calculations. Three characteristic cases have been selected for comparison, corresponding to a

supercritical, a subcritical and a critical Froude number. The kinematic viscosity of the water was

assumed always equal to 10ÿ6 m2 sÿ1.

Computations were ®rst performed for the supercritical Froude number Fr� 2�05. The still water

depth was h� 0�09545 m and the upstream velocity Uo� 1�985 m sÿ1. A grid of NI6NJ� 400630

nodes was used to calculate the viscous ¯ow, extending from ÿ0�5 to 1�0 m, where, as in all relevant

applications, the point x1� 0 coincides with the leading point of the bottom topography. The height

of the ®rst grid cells adjacent to the wall was constant along x1 and equal to 0�003 m, resulting in non-

dimensional y+-values between 90 and 110, i.e. around the upper limit of the suggested range for

applying wall functions, which is roughly 30±100. The height of the ®rst free surface cell on the

upstream boundary U was equal to 0�002 m, while the other grid points on the same boundary were

distributed exponentially up to the middle of the water depth, starting from either the bottom or the

free surface. This speci®cation of the ®rst line nodes, followed for all tested Froude numbers, allows

the clustering of mesh points in regions where rapid changes in the ¯ow variables exist, i.e. close to

the free and solid boundaries. In this particular supercritical case, which was the easiest to obtain

grid-independent results for, the same principle was applied to specify grid nodes on each constant

x1-line, the depth being de®ned as the difference between the free surface height h and the bottom

line.

Calculations for the supercritical case presented a signi®cantly higher convergence rate than any

other application. This behaviour has also been observed in 3D computations past ship models.27 The

convergence history, solving the problem by successive steady steps and following the Lagrangian

free surface correction (24), is shown in Figure 10, where two curves are plotted. The full curve

corresponds to the normalized sum of the absolute changes in the free surface (f.s.) elevations on the

vertical grid lines:

normalized sum of f :s: changes �
P
NI

jh�K�i ÿ h
�Kÿ1�
i jP

NI

jh�2�i ÿ h
�1�
i j

; �37�

where K denotes the iteration step for a speci®ed free surface boundary and the denominator is equal

to the corresponding sum at K� 2. The latter is usually close to the maximum sum. The broken lines

in Figure 10 represents the normalized sum of the absolute values of the convection terms Cn (23), on

the free boundary, de®ned as follows:

normalized sum of convection terms on f :s: �
P
NI

jC�K�n jP
NI

jC�1�n j
: �38�

It is interesting that the two curves practically coincide, implying, as expected, that geometrical

convergence assures ful®lment of the kinematic boundary condition. However, the sum of the

convection terms (38) has been considered more effective for comparisons with different grid sizes,

because it represents a ¯ow quantity which is not in¯uenced signi®cantly by the node arrangement,
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while (37) depends on the number as well as on the concentration of grid points. Figure 10 shows that

convergence has been achieved in 700 iterations (or steps). In each K-iteration, 10 internal calculation

steps were performed for solving the momentum, pressure correction and turbulence model

equations. The corresponding underrelaxation factors were ru� 0�7, rp� 0�5 and rv� 0�5, while for

the time step (26) the value rt� 0�9 was adopted. During the iterative procedure the free boundary

moves like a wave which decays downstream, as shown in Figure 11, where X and Y stand for the

horizontal and the vertical axis respectively. The calculated wave pro®le after convergence is close to

the measure one (Figure 12). According to Cahouet,3 all relevant ®gures include the uncertainty

interval of measurements. In the supercritical case the free surface follows the pro®le contour,

whereas the height of the observed wave was predicted equal to 0�045 m, i.e. within the experimental

uncertainty interval of about 0�046� 0�003 m.

Next the subcritical Froude number was examined. Experiments were carried out for a nominal

still water depth h� 0�21 m and an upstream ¯uid velocity Uo� 0�6171 m sÿ1, corresponding to

Fr� 0�43. This test case exhibits special interest because a stable, repetitive wave pattern was

generated above the topography, being suitable for numerical grid dependence tests. A 500660 grid

was ®rst applied to study the effect of some characteristic parameters. The computational domain

extended from x1�ÿ1 to 1 m. The heights of the adjacent-to-the-wall cells were equal to 0�003 m,

resulting in y+-values ranging between 30 and 70, while the height on the boundary U of the ®rst free

surface cell was equal to 0�001 m. The latter ensured that at the end of the computations at least 15

grid points were located within a wave height. Comparative tests were initially made by solving the

steady equations and following the Lagrangian free surface correction (24). Ten internal steps were

used for each iteration with speci®ed free boundary. The adopted underrelaxation factors were

ru� 0�6, rp� 0�5 and rv� 0�6, the order of the recursive formula (31) was IR� 2 and corrections

(33) were applied in the pressure correction equation (IC� 1). The underrelaxation factor rt, de®ned

through (26), was found to be the most crucial parameter that affected the convergence rate. Figure

13 shows the convergence history for two different rt-values, i.e. 0�2 and 0�5. Apparently the higher

rt� 0�5 requires a signi®cantly lower number of iterations to obtain convergence, being almost half

of the corresponding number with rt� 0�2. Then, using rt� 0�5, the effect of the multiple solution of

the pressure equation was examined. Comparing the two cases with IP� 15 and 3615 in Figure 14,

it may be concluded that the number of pressure solver iterations is not of crucial importance in this

particular problem.

Figure 10. Convergence rates of normalized free surface residuals
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The in¯uence of the grid structure on the numerical solution is shown in Figure 15, where the free

surface contour has been calculated using two different grid generators, i.e. the aforementioned

exponential and a streamlined grid created above 0�3h by interpolating the streamfunction values (6).

Although the convergence behaviour was found similar in the two cases, it is clear that the

streamlined grid predicted more accurately the measured wave pattern, owing to the more ef®cient

approximation of the convective terms. Similar trends were observed when a ®ner (750660) grid

was applied. The effect of the downstream boundary conditions on the calculated free surface contour

is shown in Figure 16, where the results obtained using the exponential grid and the non-re¯ecting

boundary conditions (described in Section 2.2) are compared with linear extrapolations for all ¯ow

variables. A difference in both the wave amplitude and the wavelength is observed between the two

solutions. It is remarkable that, owing to incompressibility as well as the two-dimensional character

Figure 11. Free surface boundary at different iteration steps K

Figure 12. Calculated and measured wave pattern at Fr� 2�05
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of the ¯ow, the downstream conditions in¯uence the numerical results considerably upstream. With

the non-re¯ecting boundary conditions the calculated ®rst and second wavelengths were noticeably

constant and equal to 0�240 m, while the wave amplitudes after the ®rst crest were equal to 0�0154,

0�0154 and 0�0140 m respectively. The corresponding wavelengths calculated with the simpli®ed

conditions were equal to 0�240 and 0�231 m, i.e. they tend to reduce close to the downstream

boundary. Besides, in the latter computations the wave amplitudes were calculated as 0�0180, 0�0150

and 0�0122 m, showing a rapid decay which is inconsistent with the experimental data.

Using the same grid and convergence parameters, the behaviour of the numerical solution of the

time-dependent equations was examined. Since in this case the successive solution in time steps

represents a real (and not a quasi-steady) problem, the free surface calculation should follow the laws

that govern the ¯uid motion. Therefore the Eulerian ®rst-order surface approximation (27) has been

used in all relevant calculations. To study the differences between the two solutions due to time

derivatives, relation (27) was also applied in the steady state procedure. Figure 17 compares the two

convergence rates. Evidently the steady solution converges considerably faster than the time-

dependent case, implying that the time derivatives introduce memory effects that preserve

¯uctuations. However, similar applications using ®ner grids have shown that these effects tend to

Figure 13. Convergence rates using different time underrelaxation factors

Figure 14. Convergence rates using different pressure solution iterations
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reduce. Comparing also Figures 13 and 17, it is observed that the Eulerian free surface correction

leads to faster convergence than the application of the Lagrangian relation (24). Similar behaviour

has been observed in other applications,12 where higher-order Eulerian schemes appear superior with

respect to Lagrangian approximations. However, the application of (27) on the middle points M of the

free surface segments (Figure 6) required signi®cantly higher longitudinal grid resolutions to produce

the same wave contours as those predicted by applying (24). Owing to this performance, which is

rather related to the spline approximation for de®ning grid points through midpoint elevations, the

Lagrangian approximation has been used in all steady computation procedures.

Grid dependence tests at the subcritical Froude number have also been performed in order to study

the in¯uence of the longitudinal mesh re®nement on the calculated results. Three cases were

Figure 15. In¯uence of grid structure on numerical solution

Figure 16. In¯uence of downstream boundary conditions on numerical solution
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examined, corresponding to 550660, 750660 and 950660 grid points. In all of them the

computational domain extended from x1�ÿ1 to 1 m. The underrelaxation factors were ru� 0�8,

rp� 0�7, rv� 0�7 and rt� 0�5, while for the pressure correction equation the parameters IP� 3615,

IR� 2 and IC� 1 were adopted. To investigate the effect of grid re®nement on the wave formation,

150 points were used in all cases along x1, varying exponentially from x1�ÿ1 to 0 m, while grid

nodes after x1� 0 where equally spaced. A streamlined grid was generated above 0�3h and the steady

iterative method was followed. The convergence rates with the three meshes are plotted in Figure 18,

showing that the numerical solution converges drastically faster as the grid becomes coarser. This

behaviour is related to the time step underrelaxation factor which, according to (26), is proportional

to the node spacing and therefore is reduced on ®ner grids. Nevertheless, the trends of the

convergence history indicate that it would be more effective to solve the problem by using

successively re®ned meshes, as described by Farmer et al.21 for 3D calculations past ships. The

predicted wave contours plotted in Figure 19 show that the calculated free surface pro®les are in good

agreement with the measured ones and almost coincide up to the third wave trough for all tested

grids. Signi®cant differences are observed only along the last wavelength, where the ®ner grid

preserves the wave amplitude while the coarser one shows a rapid decay. The calculated results for

the wave amplitude 2A (crest to trough) and the wavelength obtained with the ®nest mesh are

compared with the measured data in Table III. In this table the `numerical uncertainty' has been

derived by calculating the deviation of the calculated results during the last steps of the solution

procedure. Since the numerical solution presents a converging but also oscillating behaviour, the

computations stopped when this deviation became lower than the presented bounds. These bounds

have been reached in 8000, 14,000 and 25,000 iterations for the grids of 550660, 750660 and

950660 nodes respectively, while the corresponding residual (36) was about 8610ÿ2 in each case.

Taking into account the uncertainty intervals, the calculated values in Table III show generally a

satisfactory agreement with the experimental data. The calculated free surface boundary at different

iterative steps K is presented in Figure 20, while a general view of the generated wave above the

bottom topography is shown in Figure 21.

The critical Froude number Fr� 0�52 exhibits particular interest because experiments showed that

small upstream disturbances caused instabilities that destroyed the initially generated steady wave

pattern. The still water depth h was equal to 0�28 m and the upstream velocity Uo equal to

0�862 m sÿ1. Two sets of computations were ®rst carried out to study the differences between the

steady and time-dependent calculation procedures. The calculation domain extended from x1�ÿ1 to

Figure 17. Comparison of convergence rates between steady and time-dependent procedures
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1�60 m, the heights of the ®rst near-wall cells were equal to 0�003 m, the height of the upstream free

surface cell was equal to 0�002 m and a 750660 grid was applied. In both cases the same

underrelaxation factors were used, i.e. ru� 0�7, rp� 0�7, rv� 0�6 and rt� 0�5. The free surface

geometry was calculated following the Eulerian approximation (27) and the parameters IP� 2615,

IR� 2 and IC� 1 were adopted to solve the pressure correction equation. The convergence histories

of the steady and time-dependent solutions are plotted in Figure 22. It is important that the steady

Figure 18. Convergence rates using different grid densities

Figure 19. Grid dependence tests and comparison with measurements at Fr� 0�43

Table III. Comparison between calculated and measured wave characteristics for
Fr� 0�43

First wave Second wave
Wavelength (m) amplitude 2A (m) amplitude 2A (m)

Measured 0�23� 0�02 0�022� 0�004 0�019� 0�003
Calculated 0�22� 0�01 0�028� 0�002 0�021� 0�001
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state algorithm converges in almost 10,000 iterations, while even after this number the time-

dependent solution shows continuous ¯uctuations. If the solution beneath the still water surface

(K� 1), which has no physical evidence, could be considered as an arbitrary initial numerical

disturbance, then the aforementioned trends seem to be consistent with the instabilities which were

observed during experiments.

Next, keeping the same convergence parameters as previously, steady computations were

performed using two grids of 750660 nodes, i.e. an exponential grid and one streamlined above

h� 0�3. In both cases convergence was achieved in 13,000 iterations and the calculated wave pro®les

are compared with the measured free surface elevations in Figure 23. Apparently the two grids

predict almost the same wave pattern, showing that at the examined Froude number and the particular

Figure 20. Free surface boundary at different iteration steps K

Figure 21. Calculated and measured wave pattern at Fr� 0�43
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mesh sizes the exponential node distribution does not suffer from errors due to the upwind

approximation of convection terms. In order to study the in¯uence of the location of the downstream

boundary, computations have also been performed for a shorter domain extending up to x1� 1�2 m,

while a 600660 grid was used to obtain equal distances between successive nodes as in previous

cases. The comparison of the calculated pro®les in Figure 24 shows that there are no signi®cant

differences between the two solutions. The contours computed by the 750660 grids in Figures 23

and 25 as well as the wave amplitudes presented in Table IV are in good agreement with the

measured values. The wavelength is underpredicted by almost 6 per cent, a result that was also found

by Cahouet,3 who applied a boundary element method. It should be emphasized here that the

experimental uncertainty of the free surface recordings was rather high.

Figure 22. Comparison of convergence rates between steady and time-dependent procedures

Figure 23. In¯uence of grid structure on numerical solution

FREE SURFACE FLOWS 589

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 567±598 (1997)



3.2. Submerged hydrofoil

The second test case was to study the wave generation above the NACA 0012 hydrofoil, for which

extended experiments were carried out by Duncan.28 Unfortunately, the lift and drag coef®cients

were not measured in those experiments, and since they are of crucial importance in marine

hydrodynamics, calculations were ®rst compared with wind tunnel data for a similar hydrofoil

(`unbounded' domain). The case of 8� incidence at Re� 7�56106 was examined. Calculations were

performed in a rectangular domain using a 5006100 grid with 200 pooints on the foil surface. The

upstream, downstream, north and south boundaries were at a distance of two chord lengths from the

leading edge, the trailing edge and the upper and lower foil surface respectively. When the ¯ow was

treated as fully turbulent, the calculated lift and drag coef®cients were found as CL� 0�8245 and

Figure 24. In¯uence of downstream boundary location on numerical solution

Figure 25. Calculated and measured wave pattern at Fr� 0�52
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CD� 0�0279. Although CL is in very good agreement with the value of 0�82 measured by Michos et

al.,29 the calculated CD is rather high with respect to the experimental value of 0�023. To investigate

the in¯uence of transition which might be a possible reason for this discrepancy, a laminar ¯ow

regime was assumed up to speci®ed transition points on the suction and pressure sides of the

hydrofoil. These points were calculated by applying the relevant empirical diagrams of Shlichting30

in conjunction with the laminar boundary layer method of Polhausen.30 According to this simpli®ed

approach, the transition point was estimated to be at 0�1c from the leading edge on the upper (suction)

side and at 0�95c on the lower side, where c is the chord length. Calculations were performed

assuming the ¯ow completely turbulent after these points. Then the drag coef®cient was found equal

to 0�0238 and the lift coef®cient changed to 0�8358, i.e. quite close to the measured values. The

satisfactory agreement between computations and measurements is also shown in Figure 26, where

the pressure coef®cients are compared.

Free surface calculations were performed for the incidence angle of 5� at a nominal upstream

velocity Uo of 0�80 m sÿ1. The foil had a chord of 0�203 m, it was placed at a height of 0�170 m

above the tank bottom and its depth of submergence was equal to 0�193 m, resulting in Fr� 0�58.

Based on the chord length, the calculated Reynolds number was 1�416105, implying that the ¯ow

was probably transitional during experiments. In all numerical tests the grid extended from 0 to 1�6 m

and the leading edge was located at x1� 0�6 m, i.e. three chord lengths downstream of the input

boundary. A streamlined grid was created above and below 0�3d, where d denotes the vertical

distance on U of the foil nose from the water surface and the bottom respectively. The height of the

®rst free surface cell was equal to 0�003 m and the bottom line was assumed a free boundary where

Figure 26. Comparison between calculated and measured CP-values on foil (8� incidence, Re� 7�56105)

Table IV. Comparison between calculated and measured wave characteristics for
Fr� 0�52

First wave Second wave
Wavelength (m) amplitude 2A (m) amplitude 2A (m)

Measured 0�53� 0�03 0�044� 0�007 0�030� 0�003
Calculated 0�47� 0�01 0�045� 0�001 0�033� 0�001

FREE SURFACE FLOWS 591

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 567±598 (1997)



conditions u1�Uo and u2� 0 applied. In all cases the underrelaxation factors were ru� 0�5, rp� 0�3
and rv� 0�5, while the parameters IP� 3615, IR� 4 and IC� 1 were adopted in the pressure

correction equation.

The steady state equations in conjunction with the quasi-Lagrangian correction (24) were solved to

calculate the free surface contour, using 10 internal steps for a speci®ed geometry. To obtain accurate

results with the H-type mesh employed, a very ®ne grid discretization was required in the x1-direction

around the nose of the hydrofoil. Since the time step of the iterative method followed depends on the

grid spacing, a high concentration of nodes results in very low time steps and therefore increases

considerably the number of iterations. To overcome this shortcoming, the free surface calculation was

based on equally spaced points which were corrected according to (24), where the velocity

components were calculated using linear interpolations. In this procedure, successfully applied to

orthogonal curvilinear grids in previous applications,31 the surface nodes of the basic mesh are

determined by a spline interpolation among the aforementioned, equally distributed points. The

convergence histories for a coarse and a ®ne mesh are plotted in Figure 27, where 600 and 1500

points were used respectively to describe the free surface contour. The corresponding time step

underrelaxation factors were equal to 0�5 and 0�8. Similar trends are observed as in the previous

applications, i.e. the calculations with the coarse grid lead to faster convergence. An interesting trend

of convergence history is presented in Figure 28, where the values of the ®ne-grid-computed free

surface elevations (H) at the ®rst two crests and troughs are plotted. Obviously, ¯uctuations decay at

slower rates as the monitoring point moves downstream. The lift and drag coef®cients also show an

oscillating behaviour of gradually reduced amplitude (Figure 29), while the momentum and mass

residuals (34) reduce as the free surface converges (Figure 30).

Calculated free surface contours using different grid densities of 550660, 5506100, 7506100

and 9506100 nodes are compared with measured values in Figure 31. While the computed contours

are in satisfactory agreement with experimental results between the ®rst and the second wave trough,

the ®nest grid in the longitudinal direction predicts more accurately the second wave amplitude. The

corresponding y+-values on the centres of the adjacent-to-the-wall cells were about 20. To investigate

the in¯uence of the wall function approximation as well as the existence of laminar regions, two more

runs were made with the ®nest grid of 9506100 nodes. In the ®rst case the cell heights close to the

foil contour were increased, resulting in values of y+� 40. In the second case, transition points

located at 0�45c on the upper and 0�98c on the lower side were calculated according to the previously

referred method and the ¯ow was treated as laminar up to them. The calculated wave pro®les are

Figure 27. Convergence rates using different grid densities
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Figure 28. Convergence histories of characteristic free surface points

Figure 29. Convergence histories of lift and drag coef®cients

Figure 30. Convergence histories of momentum and mass residuals
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presented in Figure 32. While the different y+-values do not affect signi®cantly the computed wave,

the existence of extended laminar ¯ow regimes produce a higher wave amplitude around the ®rst

crest. It must be mentioned here that the estimation of the transition points was based on the

unbounded ¯ow around the foil, while taking into account the pressure distribution under the free

surface, these points should move towards the leading edge. Therefore the ®rst wave crest should lie

between the fully turbulent and the transitional ¯ow calculations. Calculated values for the

wavelength and the trough-to-crest amplitude 2A are compared with measured ones in Table V, while

the general view of the generated wave is presented in Figure 33. The numerical results correspond to

the fully turbulent computations with the 9506100 grid and underpredict the wavelength by almost 7

per cent and the wave amplitude by 5 per cent. These differences may be related either to numerical

approximations (e.g. discretization, restricted computational domain, turbulence model) or to the

physics of the particular case, which is transitional, nearly critical and highly unstable.

Finally the calculated lift, drag and skin friction coef®cients for all compupted cases are presented

in Table VI. An important conclusion can be drawn, namely that the CL- and CD-values in the fully

turbulent calculations do not differ signi®cantly between the coarse (550660) and the ®ne

(9506100) grid and consequently the calculation of hydrodynamic forces requires rather acceptable

grid resolutions. The tested y+ ranges do not affect practically the calculated results, while the

existence of laminar regions increases CL by almost 4 per cent and decreases CD by 6 per cent. The

latter decrease is due to the reduction of CF by 50 per cent, while the pressure component appears

higher. Fully turbulent computations were also carried out for the unbounded ¯ow around the

hydrofoil at the same Reynolds number and angle of incidence. A grid of 5006100 nodes was used

and the calculated coef®cients were CL� 0�5159, CD� 0�02356 and CF� 0�01014. Comparing these

values with the corresponding ones of Table VI, it is found that the presence of the free surface

increases CL by 18 per cent and CD by almost 40 per cent, indicating that the generated waves require

remarkably higher power to attain the same speed. These differences are mostly due to the drastic

changes in the pressure ®eld, as the local CP plots demonstrate in Figure 34.

Figure 31. Grid dependence tests and comparison with measurements for submerged hydrofoil (Re� 1�416105, Fr� 0�58)
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Table V. Comparison between calculated and measured char-
acteristics of wave above hydrofoil

Wavelength (m) Wave amplitude 2A (m)

Measured 0�418� 0�003 0�042� 0�003
Calculated 0�385� 0�001 0�040� 0�002

Figure 33. Calculated and measured wave pattern above hydrofoil (Re� 1�416105, Fr� 0�58)

Figure 32. In¯uence of near-wall grid clustering and transition on calculated free surface
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4. CONCLUDING REMARKS

The calculations which have been performed in the present study have shown in general that the

predicted free surface characteristics are in satisfactory agreement with the measured data.

Computations of the ¯ow about a bottom topography have shown that the numerical results were

in¯uenced by the approximation of convective terms (grid structure) as well as the downstream

boundary conditions at low Froude numbers. Applying the adopted Lagrangian method, it was found

that convergence depends on the Froude number, the grid size and the free surface underrelaxation.

The steady state procedure presented remarkably higher convergence rates than time-dependent

calculations, which, in addition, produced unstable results at the critical Froude number. Grid

dependence tests revealed that high grid resolutions are required in the longitudinal direction to avoid

the problem of wave height numerical decay.

The free surface calculations around the tested hydrofoil presented similar convergence trends with

respect to the grid size, i.e. the convergence rate was higher on coarse grids. Although grid

dependence tests demonstrated that very ®ne grids are required to predict accurately the wave height,

the calculated lift and drag coef®cients were found to be practically insensitive to the grid size in fully

turbulent computations. In contrast, the calculated results of both wave height and integrated force

coef®cients were affected when transition was taken into account.

Table VI. Calculated lift, drag and skin friction coef®cients for submerged hydrofoil

Flow y+ Grid (NI6NJ) CL CD CF

Turbulent 40 9506100 0�6248 0�0387 0�0112
Transitional 8±20 9506100 0�6564 0�0364 0�0064
Turbulent 20 9506100 0�6284 0�0385 0�0118
Turbulent 20 7506100 0�6267 0�0380 0�0119
Turbulent 20 5506100 0�6286 0�0397 0�0120
Turbulent 20 550660 0�6197 0�0404 0�0118

Figure 34. Calculated CP distributions on foil surface with and without free surface
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